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first equation

A A Kapaev

St Petersburg Department of Steklov Mathematical Institute, Fontanka 27,
St Petersburg 191011, Russia

E-mail: kapaev@pdmi.ras.ru

Received 19 May 2004
Published 3 November 2004
Online at stacks.iop.org/JPhysA/37/11149
doi:10.1088/0305-4470/37/46/005

Abstract
Using the Riemann–Hilbert approach, the �-function corresponding to the
solution of the first Painlevé equation yxx = 6y2 + x with the asymptotic
behaviour y ∼ ±√−x/6 as |x| → ∞ is constructed. The exponentially small
jump in the dominant solution and the coefficient asymptotics in the power-like
expansion to the latter are found.

PACS numbers: 02.30.Hq, 02.30.Zz

1. Introduction

The Painlevé first equation [1]

yxx = 6y2 + x, (P1)

is the simplest of the six classical equations of Painlevé–Gambier [2] and can be derived
from any other Painlevé equation using certain scaling reductions [3]. Recent interest in this
equation is due to its significant role in various physical models.

For instance, equation P1 describes certain solutions to KdV and Bussinesq equations
[4, 5], bifurcations in some non-integrable nonlinear models [6] and continuous limits in
matrix models of quantum gravity [7–10]; the �-function associated with P1 appears in
n-large asymptotics of semiclassical orthogonal and bi-orthogonal polynomials [11, 12] and
thus becomes a primary object in the problem of Laplacian growth [13].

In the context of string theory, ‘physical’ solutions of P1 are distinguished from ‘non-
physical’ones by the monotonic asymptotic behaviour as x → −∞ [7, 8, 10, 14, 15]. There are
two kinds of such monotonic boundary conditions, i.e. y(x) � ±√−x/6. Using elementary
perturbation analysis, the solution y(x) = −√−x/6+O(x−2) is unique as being a background
to a two-parametric family of oscillating solutions. Solutions approaching a positive branch of
the square root as x → −∞, i.e. y(x) � √−x/6, form a one-parametric family parametrized
by an amplitude from an exponentially small perturbation to a power-like dominant solution.
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These solutions have the asymptotic expansion y(x) = √−x/6
∑∞

k=0 ak(−x)−5k/2 +O(x−∞),
whose coefficients ak admit a combinatorial interpretation [16, 17].

In the problem of Laplacian growth without surface tension (Hele-Shaw problem, quantum
Hall effect, etc), the shape of a growing droplet is described using a certain �-function, see
[13]. If the droplet develops a cusp singularity, this �-function can be approximated by a
�-function associated with the first Painlevé transcendent [18]. Certain ‘physical’ asymptotic
conditions imposed on this �-function determine the relevant Stokes multipliers sk. In turn,
these sk pinch out the monotonic as x → −∞ Painlevé function, y(x) � √−x/6.

Equation P1 has unexpectedly rich asymptotic properties in the complex x-plane.
Boutroux [19] has shown that, generically, the asymptotics of the Painlevé first transcendent
as |x| → ∞ is described by the modulated Weierstrass elliptic function, whose module is
a transcendent function of arg x. Furthermore, the module function is such that the elliptic
asymptotic ansatz degenerates along the directions arg x = π + (2π/5)n, n = 0, ±1, ±2.
Boutroux [19] called the corresponding trigonometric expansions ‘truncated’solutions. Their
one- and zero-parameter reductions, if they admit analytic continuation into one or two
neighbouring sectors of the complex x-plane, were called by Boutroux ‘bi-truncated’ and
‘tri-truncated’ solutions. All bi- and tri-truncated solutions have the algebraic leading order
behaviour, y(x) ∼ ±√−x/6, perturbed by exponential terms.

We call a discontinuity in the asymptotic form of an analytic function the Stokes
phenomenon. In the case of P1, a jump in the phase shift of a modulated elliptic ansatz
across the rays, arg x = π + (2π/5)n, is called the nonlinear Stokes phenomenon. For bi- and
tri-truncated solutions, a jump in the exponentially small perturbation of a dominant solution
resembles the well-known Stokes phenomenon in the linear theory and is thus called the
quasi-linear Stokes phenomenon.

In [20–22], equation P1 was studied further using classical tools like the perturbation
approach and the method of nonlinear integral equations. Mainly, these articles discuss the
behaviour of the Painlevé transcendents on the real line. A recent paper [23] adopts the same
approach, carefully studying the behaviour of the tri-truncated solution on the negative part of
the real line.

In [24, 25], the multiple scale analysis was applied to P1 (and P2) to find a precise form of
the phase shift in the elliptic asymptotic ansatz within complex sectors between the indicated
rays. In [14, 15], the Witham averaging method was used to describe the elliptic tail of the
monotonic at −∞ solution of P1.

The isomonodromy deformation approach to Painlevé equations, see [26–28], was applied
to equation P1 in [29–31]. In this way, the asymptotics of the Painlevé functions is expressed
in terms of the Stokes multipliers of an associated linear system. Then, the equation of a
monodromy surface yields connection formulae for the asymptotic parameters along different
directions of the complex x-plane. A complete description of the nonlinear Stokes phenomenon
in P1 is given in [30]. A heuristic description of the quasi-linear Stokes phenomenon in P1 can
be found in [29].

Using the Borel transform technique and some assumptions on the analytic properties of
the relevant Borel transforms, as well as the isomonodromy deformation approach based on
the so-called exact WKB analysis, Takei [32] has re-derived the latter result (see [33] for more
discussion).

In the present paper, we construct the �-function associated with the monotonic as
|x| → ∞ solution of P1 and rigorously describe the relevant quasi-linear Stokes phenomenon.
Our main tool is the Riemann–Hilbert (RH) problem. We observe that the jump graph for
our RH problem can be decomposed into a disjoint union of two branches, one of which
is responsible for the background

√−x/6, while the other produces the exponentially small
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perturbation of the dominant solution (see [33] for a similar observation in the P2 case). Using
the steepest-descent approach of Deift and Zhou [34], we prove the unique solubility of this
problem and compute the asymptotics of the Painlevé transcendent.

Applying a rotational symmetry, we prove the existence of five solutions, y4n(x),
n = 0, ±1, ±2, asymptotic to

√
e−iπx/6 as |x| → ∞ in the respective overlapping sectors

arg x ∈ (−π
5 − 4π

5 n, 7π
5 − 4π

5 n), see (2.69) and (2.72), and we find the exponentially small
differences y4(n−1)(x) − y4n(x), n = 0, ±1, ±2, see (2.71). The latter constitute the quasi-
linear Stokes phenomenon.

A collection of the functions y4n(x), n = 0, ±1, ±2, forms a piecewise meromorphic
function ŷ(x) ∼

√
e−iπx/6 as |x| → ∞. The moments of this function immediately yield the

asymptotics as k → ∞ for the coefficients ak (3.12) of the x-series expansion to the dominant
solution (3.1).

For the first time, the formula for the coefficient asymptotics was reported in [32]. In [23],
the recurrence relations for the same coefficients were studied by direct means and it proves
a similar asymptotic formula modulo a common factor. (An advanced version of the direct
approach to a generalized recurrence relation, which contains one for P1 as a special case, can
be found in [35].) The exact value of this common factor was announced in [23] with reference
to the method of [36] based on the Borel transform formula. In contrast, we do not use the
Borel transform technique at any stage of our investigation.

This paper is organized as follows. In section 2, we recall the Lax pair for P1, formulate
the relevant RH problem and solve it asymptotically. Using the approximate �-function, we
find the asymptotics of the bi- and tri-truncated Painlevé transcendents and of the relevant
Hamiltonian functions. In section 3, we find the coefficient asymptotics in the power-like
expansion to the formal solution of P1.

2. The RH problem for P1

Introduce generators of su(2, C),

σ3 =
(

1
−1

)
, σ+ =

(
1

0

)
, σ− =

(
0

1

)
and the Pauli matrices σ1 = σ+ + σ− and σ2 = −iσ+ + iσ− together and consider the system
of matrix differential equations for � (see [37, 38]):

∂�

∂λ
�−1 = A(λ, x) = −zσ3 + (2λ2 + 2yλ + x + 2y2)σ+ + 2(λ − y)σ−, (2.1a)

∂�

∂x
�−1 = U(λ, x) = (λ + 2y)σ+ + σ−. (2.1b)

Compatibility of (2.1a) and (2.1b) implies that the coefficients z and y depend on the
deformation parameter x in accordance with the nonlinear differential system

yx = z, zx = 6y2 + x, (2.2)

which is equivalent to the classical Painlevé first equation P1. Following [26], see also [39],
the linear equation (2.1a) has only the one (irregular) singular point at infinity, and there exist
solutions �k(λ) of (2.1) with the asymptotics

�k(λ) = λσ3/4 1√
2
(σ3 + σ1)(I − Hσ3λ

−1/2 + O(λ−1))eθ(λ)σ3 , θ(λ) = 4
5λ5/2 + xλ1/2,

(2.3)
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as

λ → ∞, λ ∈ �k = {λ ∈ C : arg λ ∈ ( 2π
5 (k − 3

2 ), 2π
5 (k + 1

2 ))}, k ∈ Z. (2.4)

Solutions �k(λ), k ∈ Z, are called the canonical solutions, while sectors �k are called the
canonical sectors. Canonical solutions �k(λ) are uniquely determined by (2.3)–(2.4) and solve
both the equations (2.1). They differ from each other in constant right matrix multipliers Sk

called Stokes matrices,

�k+1(λ) = �k(λ)Sk, S2k−1 =
(

1 s2k−1

0 1

)
, S2k =

(
1 0
s2k 0

)
. (2.5)

Observing that all solutions of (2.1a) are entire functions, thus

�k(e
2πiλ) = �k(λ), (2.6)

and using the relation

�k+5(e
2πiλ) = �k(λ)iσ1, (2.7)

which follows from the definition of the canonical solutions and the asymptotics (2.3) and
(2.4), we readily find the constraints for the Stokes matrices [29],

Sk+5 = σ1Skσ1, S1S2S3S4S5 = iσ1 (2.8)

or, in scalar form,

sk+5 = sk, 1 + sksk+1 = −isk+3, k ∈ Z. (2.8′)
Thus, generically, two of the Stokes multipliers sk, k ∈ Z, determine all others.

The inverse monodromy problem consists of reconstructing �k(λ) using known values
of the Stokes multipliers sk. It can be equivalently formulated as an RH problem. With this
aim, introduce the union of rays γ = ρ ∪ (∪5

k=1γk−3), where γk = {λ ∈ C : arg λ = (2π/5)k},
k = − 2, −1, 0, 1, 2, and ρ = {λ ∈ C : arg λ = π}, all oriented towards infinity. Denote the
sectors between the rays ρ and γ−2 by ω−2, those between γk−1 and γk, k = −1, 0, 1, 2, by ωk

and those between γ2 and ρ by ω3. All the sectors ωk are in one-to-one correspondence to the
canonical sectors �k (2.4), see figure 1.

Let each of the sectors ωk, k = −2, −1, . . . , 3, be a domain for a holomorphic 2×2 matrix
function �k(λ). Denote the collection of �k(λ) by �(λ),

�(λ)|λ∈ωk
= �k(λ). (2.9)

Let �+(λ) and �−(λ) be the limits of �(λ) on γ to the left and the right, respectively.
Let θ(λ) = 4

5λ5/2 + xλ1/2 be defined on the complex λ-plane cut along the negative part
of the real axis. The RH problem we talk about is the following one:

1. find a piecewise holomorphic 2 × 2 matrix function �(λ) such that

lim
λ→∞

λ1/2( 1√
2
(σ3 + σ1)λ

−σ3/4�(λ)e−θσ3 − I) (2.10)

exists and is diagonal;
2. on the contour γ , the jump condition holds

�+(λ) = �−(λ)S(λ), (2.11)

where the piecewise constant matrix S(λ) is given by the following equations:

S(λ)|γk
= Sk, S2k−1 = I + s2k−1σ+, S2k = I + s2kσ−, (2.12a)

S(λ)|ρ = −iσ1, (2.12b)

with the constants sk satisfying the constraints (2.8 ′).
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Figure 1. The RH problem graph for P1.

Because �(λ) satisfies the asymptotic condition

Y(λ) := 1√
2
(σ3 + σ1)λ

−σ3/4�(λ)e−θσ3

=
(

1 − (H/λ1/2) + (H2/2λ) + O(λ−3/2) (y/2λ) + O(λ−3/2)

(y/2λ) + O(λ−3/2) 1 + (H/λ1/2) + (H2/2λ) + O(λ−3/2)

)
,

λ → ∞, (2.13)

where

H = 1
2z2 − 2y3 − xy, (2.14)

the solution y(x) of the Painlevé equation can be found from the ‘residue’ of Y(λ) at infinity,

y = 2 lim
λ→∞

λY12(λ) = 2 lim
λ→∞

λY21(λ). (2.15)

Remark 2.1. It is easy to see that H is nothing but the Hamiltonian for the Painlevé first
equation with the canonical variables q = y and p = z.

Equation (2.15) specifies the Painlevé transcendent as a function y = f(x, {sk}) of the
deformation parameter x and of the Stokes multipliers sk. Using the solution y = f(x, {sk})
and the symmetries of the Stokes multipliers described in [29], we obtain further solutions
of P1:

y = f(x̄, {−s−k}), (2.16a)

y = ei(4π/5)nf(ei(2π/5)nx, {sk+2n}), n ∈ Z, (2.16b)

where the over bar implies complex conjugation.
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For technical reasons, to find the asymptotics of y(x), we use below not Y(λ) but the related
auxiliary functions χ(λ) and X(λ) with expansions (2.45) and (2.50), respectively. The latter
involve differences y − ŷ(x), ŷ(x) are known, which can be estimated using singular integral
equations with contracting operators.

2.1. Asymptotic solution for s0 = 0

Let us consider the RH problem above, where s0 = 0 assuming that |x| → ∞ within the
sector arg x ∈ [(3π/5), π]. Equations (2.12a) imply that �(λ) has no jump across the ray
γ0 = {λ ∈ C : arg λ = 0}. The constraints (2.8 ′) reduce to the following system of equations:

s−2 = s2 = s−1 + s1 = i. (2.17)

Our first step in the RH problem analysis consists of introducing an auxiliary g-function,

g(λ) = 4
5 (λ + 2λ0)

5/2 − 4λ0(λ + 2λ0)
3/2, λ0 =

√
e−iπx/6, (2.18)

defined on the complex λ-plane cut along the ray (−∞, −2λ0]. The asymptotics of the
g-function as λ → ∞ coincides with the canonical one,

g(λ) = 4
5λ5/2 − 6λ2

0λ
1/2 − 4λ3

0λ
−1/2 + O(λ−3/2) = 4

5λ5/2 + xλ1/2 + O(λ−1/2). (2.19)

Let us formulate an equivalent RH problem for the piecewise holomorphic function Z(λ),

Z(λ) = Y(λ)e(θ(λ)−g(λ))σ3 = 1√
2
(σ3 + σ1)λ

−σ3/4�(λ)e−g(λ)σ3 , (2.20)

(i) Z(λ) → I as λ → ∞;
(ii) Z+(λ) = Z−(λ)G(λ), G(λ) = egσ3S(λ)e−gσ3 , λ ∈ γk,

Z+(λ) = σ1Z−(λ)σ1, λ ∈ ρ.

(2.21)

If S(λ) = I + sσ± then G(λ) = I + se±2gσ±. Our next goal is to transform the jump
contour γ to the contour of the steepest descent for the matrix G(λ) − I. We denote by γ+
the level line Im g(λ) = const passing through the stationary phase point λ = λ0 =

√
e−iπx/6

and asymptotic to the rays arg λ = ±2π/5. This is the steepest descent line for e2g. Let
γ− = ∪j�j ∪ σ be the union of the level lines �j , j = 0, 1, 2, Im g(λ) = const, and σ,
Reg(λ) = const, all emanating from the critical point λ = −2λ0. Among them, the level
line �1 approaching the ray arg λ = 2π/5 (if arg x = π, the level line �1 is the segment
[ − 2λ0, λ0]) is the steepest descent line for e2g, while the level lines �0 and �2 approaching the
rays arg λ = −4π/5 and arg λ = 4π/5, respectively, are the steepest descent lines for e−2g.
The level line σ, Reg(λ) = const, approaches the ray arg λ = π.

Since the Stokes matrix S1 can be factorized,

S1 =
(

1 s1

0 1

)
=

(
1 i − s−1

0 1

)
= S−1

−1

(
1 i
0 1

)
,

it is convenient to consider the following equivalent RH problem for �(λ).
For arg x ∈ [3π/5, π], the jump contour is the union of γ+ oriented from up to down

and γ− whose components are oriented towards infinity, see figure 2. The jump matrices
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Figure 2. An RH problem graph for s0 = 0.

are as follows:

λ ∈ γ+ : S(λ) = S−1 =
(

1 s−1

0 1

)
,

λ ∈ �1 : S(λ) = S+ =
(

1 i
0 1

)
,

λ ∈ �0 ∪ �2 : S(λ) = S− =
(

1 0
i 1

)
,

λ ∈ σ : S(λ) = −iσ1.

(2.22)

Remark 2.2. The jump contour for the RH problem (2.22) is decomposed into the disjoint
union of the line γ+ and the graph γ−, see figure 2. For the boundary value arg x = π − 0,
the level line �1 emanating from λ = −2λ0 passes through the stationary phase point λ = λ0

and partially merges with the upper half of the level line γ+. To construct the RH problem
however, it is not necessary to transform the jump contour precisely to the steepest descent
graph. It is enough to ensure that the jump matrices approach the unit matrix uniformly with
respect to λ and fast enough as x → ∞ or λ → ∞.

As arg x ∈ [3π/5, π], introduce the reduced RH problem (s0 = s−1 = 0) for the piecewise
holomorphic function (λ) discontinuous across γ− only:

(i) limλ→∞ λ1/2
(

1√
2
(σ3 + σ1)λ

− 1
4 σ3(λ)e−θσ3 − I

)
is diagonal,

(ii) +(λ) = −(λ)S(λ), λ ∈ γ− = ⋃
j=0,1,2

�j

⋃
σ.

(2.23)

The jump matrix S(λ) here is defined in (2.22).

Theorem 2. 1. If arg x ∈ [3π/5, π] and |x| is large enough, then there exists a unique solution
of the RH problem (2.23). The Painlevé function y0(x) corresponding to s0 = s−1 = 0 has the
asymptotics y0(x) =

√
e−iπx/6 + O(x−2) as x → ∞ in the above sector.
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Proof. Uniqueness. Since det S(λ) ≡ 1, we have det + = det −, and hence det (λ) is an
entire function. Furthermore, because of normalization of (λ) at infinity, det (λ) ≡ −1.
Let ̃ and  be two solutions of (2.23). Taking into account the cyclic relation in (2.8) which
implies the continuity of the RH problem for (λ) at λ = −2λ0, the ‘ratio’χ(λ) = ̃(λ)−1(λ)

is an entire function of λ. Using the Liouville theorem and normalization of  and ̃ at infinity,
we find χ(λ) ≡ I, i.e. (λ) ≡ ̃(λ).

Existence. Introduce an auxiliary function

̂0(z) =
(

v′
1(z) v′

2(z)

v1(z) v2(z)

)
, (2.24)

where the prime means differentiation w.r.t. z and

v1(z) =
√

2πeiπ/6Ai(ei2π/3z), v2(z) = −
√

2πAi(z), (2.25)

with Ai(z) standing for the classical Airy function, which can be defined using the Taylor
expansion [40, 41],

Ai(z) = 1

32/3�( 2
3 )

∞∑
k=0

3k�(k + 1
3 )z3k

�( 1
3 )(3k)!

− 1

31/3�( 1
3 )

∞∑
k=0

3k�(k + 2
3 )z3k+1

�( 2
3 )(3k + 1)!

. (2.26)

Asymptotics at infinity of this function and its derivative are as follows:

Ai(z) = 1

2
√

π
z−1/4 exp(− 2

3z3/2)

{
N∑

n=0

(−1)n3−2n
�(3n + 1

2 )

� 1
2 (2n)!

z−3n/2 + O(z−3(N+1)/2)

}
,

Ai′(z) = 1

2
√

π
z1/4 exp

(− 2
3z3/2

) {
N∑

n=0

(−1)n3−2n(3n + 1
2 )

�(3n − 1
2 )

� 1
2 (2n)!

z−3n/2 (2.27)

+ O(z−3(N+1)/2)

}
, as z → ∞, arg z ∈ (−π, π).

It is worth noting that the function ̂0(z) satisfies the linear differential equation

d̂0

dz
= {zσ+ + σ−}̂0. (2.28)

Using the properties of the Airy functions, we find that the products

̂1(z) = ̂0(z)S−, ̂2(z) = ̂1(z)S+, ̂3(z) = ̂2(z)S−, (2.29)

where S± = I + iσ±, have the asymptotic expansion

̂k(z) = zσ3/4 1√
2
(σ3 + σ1)V∞(z) exp( 2

3z3/2σ3), (2.30)

as |z| → ∞, arg z ∈ (−π + (2π/3)k, (π/3) + (2π/3)k), where

V∞(z) = I −
∞∑

n=1

3−2n
�(3n − 1

2 )

2� 1
2 (2n)!

z−3n/2

(
1 (−1)n6n

6n (−1)n

)
. (2.31)

Let γ̂− = σ̂ ∪j=0,1,2 �̂j be the union of the rays �̂j = {z ∈ C : arg z = (2π/3)(j − 1)},
j = 0, 1, 2, and σ̂ = {z ∈ C : arg z = π}, all oriented towards infinity. This graph divides the
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Figure 3. The model RH problem graph.

complex z-plane into four regions: the sector ω̂0 between σ̂ and �̂0; the sectors ω̂k, k = 1, 2,
between the rays �̂k−1 and �̂k; and the sector ω̂3 between the rays �̂2 and σ̂.

Define a piecewise holomorphic function ̂(z),

̂(z)|z∈ω̂k
= ̂k(z). (2.32)

By construction, this function solves the following RH problem (see figure 3):

(i) 1√
2
(σ3 + σ1)z

−σ3/4̂(z) exp
(− 2

3z3/2σ3
) = I + O(z−3/2), z → ∞, (2.33)

(ii) z ∈ γ̂− : ̂+(z) = ̂−(z)Ŝ(z),

z ∈ �̂1 : Ŝ(z) = S+, z ∈ �̂0 ∪ �̂2 : Ŝ(z) = S−,

z ∈ σ̂ : Ŝ(z) = −iσ1.

(2.34)

Therefore the function ̂(z) has precisely the jump properties of the function (λ). To
find (λ) with the correct asymptotic behaviour at infinity, let us use the mapping

2
3z3/2 = g(λ) = 4

5 (λ + 2λ0)
5/2 − 4λ0(λ + 2λ0)

3/2

or

z(λ) = (−6λ0)
2/3(λ + 2λ0)

(
1 − 1

5λ0
(λ + 2λ0)

)2/3

, λ0 =
√

e−iπx/6, (2.35)

Within the disc |λ + 2λ0| � R < 3|λ0| = | 3
2x|1/2, the mapping (2.35) yields a holomorphic

change of the independent variable. Introduce a piecewise holomorphic function ̃(λ),

̃(λ) =



B(λ)̂(z(λ)), |λ + 2λ0| < R,

(λ + 2λ0)
σ3/4 1√

2
(σ3 + σ1)e

g(λ)σ3 , |λ + 2λ0| > R,

B(λ) = (−6λ0)
−σ3/6

(
1 − λ + 2λ0

5λ0

)−σ3/6

, (2.36)
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Figure 4. An RH problem graph for the correction function χ(λ).

where (λ + 2λ0)
1/4 is defined on the plane cut along the level line σ asymptotic to the ray

arg λ = π. Note that B(λ) is holomorphic in the interior of the above disc |λ+2λ0| � R < 3|λ0|
and thus does not affect the jump properties of ̂(z(λ)). We look for the solution of the RH
problem (2.23) in the form of the product

(λ) = (I + (4λ3
0 − H)σ+)χ(λ)̃(λ). (2.37)

Consider the RH problem for the correction function χ(λ). By construction, it is a
piecewise holomorphic function discontinuous across the clockwise-oriented circle L of radius
R centred at −2λ0 and across the part of γ− located outside the above circle. (In fact, χ(λ) is
continuous across σ, see (2.39) below.) The latter is divided by γ− into four arcs: L0 between
σ and �0; Lk, k = 1, 2, between �k−1 and �k; and L3 between �2 and σ, see figure 4. To simplify
our notation, let us put

λ̃ = λ + 2λ0. (2.38)

Then the RH problem for χ(λ) is as follows:

(i) χ(λ) → I, λ → ∞;
(ii) χ+(λ) = χ−(λ)G(λ), λ ∈ �,

where

λ ∈ �1, |λ̃| > R : G(λ) = I + i
2 e2g(σ3 − λ̃1/2σ+ + λ̃−1/2σ−),

λ ∈ �0 ∪ �2, |λ̃| > R : G(λ) = I + i
2 e−2g(σ3 + λ̃1/2σ+ − λ̃−1/2σ−),

λ ∈ σ, |λ̃| > R : G(λ) = I,

|λ̃| = R, λ ∈ Lk : G(λ) = B(λ)̂k(z(λ))e−gσ3 1√
2
(σ3 + σ1)λ̃

− 1
4 σ3 ,

k = 0, 1, 2, 3.

(2.39)

Taking into account the equations (2.34), it is easy to check the continuity of the RH
problem at the node points. Observing that, on the circle |λ̃| = R = c|x|1/2, 0 < c <

√
3/2,
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we have that z(λ) = O(|x|5/6) is large, we immediately see that

‖G(λ) − I‖ � c|λ̃|1/2e−(2/3)1/2|x|1/2|λ̃|3/2
, λ ∈ �k, k = 0, 1, 2, |λ̃| � R,

(2.40)

where the precise value of the positive constant c is not important for us. Taking into account
that, for the above reason, on the circle |λ̃| = R, we may use for ̂k its asymptotics (2.30), the
jump matrix G(λ) has the asymptotic expansion

G(λ) − I = −
∞∑

n=1

3−2n
�(3n − 1

2 )

2�( 1
2 )(2n)!

z− 3n
2

×




1 + (−1)n

2
(1 + 6n)

1 − (−1)n

2
(1 + 6n)λ̃1/2

1 − (−1)n

2
(1 − 6n)λ̃−1/2 1 + (−1)n

2
(1 − 6n)


 ,

z = (−6λ0)
2/3

(
1 − λ̃

5λ0

)2/3

λ̃, λ̃ = λ + 2λ0, |λ̃| = R. (2.41)

Therefore, we have the estimate

‖G(λ) − I‖ � cR−2 = c′|x|−1, (2.42)

where the precise values of the positive constants c, c′ are not important for us.
Now, the solvability of the RH problem (2.39), and therefore of (2.23), for large enough |x|

is straightforward. Indeed, consider the equivalent system of the non-homogeneous singular
integral equations for the limiting value χ+(λ), i.e.

χ+(λ) = I − 1

2πi

∫
�

χ+(ζ)(G−1(ζ) − I)

ζ − λ+
dζ, (2.43)

or, in symbolic form, χ+ = I + Kχ+. Here λ+ means the left limit of λ on � (recall that the
circle |λ̃| = R is clockwise oriented), and K is the composition of the operator of the right
multiplication in G−1(λ) − I and of the Cauchy operator C+. An equivalent singular integral
equation for ψ+ := χ+ − I differs from (2.43) in the inhomogeneous term only,

ψ+ = KI + Kψ+. (2.44)

Consider the integral equation (2.44) in the space L2(�). Since G−1(λ) − I is small in L2(�)

for large enough |x|, and C+ is bounded in L2(�), then ‖K‖L2(�) � c|x|−1/2 with some positive
constant c, thus K is contracting and I −K is invertible in L2(�) for large enough |x|. Because
KI ∈ L2(�), equation (2.44) for ψ+ is solvable in L2(�), and the solution χ(λ) of the RH
problem (2.39) is determined by ψ+(λ) using the equation χ+ = I + KI + Kψ+.

Let us find the asymptotics of the Painlevé function. Using (2.13) and the definition of
̃(λ) (2.36), the asymptotics of χ(λ) as λ → ∞ in terms of y and H is

χ(λ) = I + 1

2λ
(y − λ0 − (4λ3

0 − H)2)σ3 + 1

λ
(4λ3

0 − H)σ− +
(

O(λ−3/2) O(λ−1)

O(λ−2) O(λ−3/2)

)
.

(2.45)
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On the other hand, in accord with the above, the function χ+ is given by the converging
iterative series, χ+ = ∑∞

n=0 KnI. To compute the term KnI, we observe that the contribution
of the infinite branches �k is exponentially small in x due to estimate (2.40). Using the
expansion (2.41), we reduce the evaluation of the integral along the circle |λ̃| = R to the
residue theorem. Omitting this elementary computation, we present the final result: for large
enough |x|, arg x ∈ [ 3π

5 , π], the asymptotics of χ(λ) as λ → ∞ is given by

χ(λ) = I +
(

O(λ−4
0 λ̃−1) O(λ−1

0 λ̃−1)

O(λ−2
0 λ̃−1) O(λ−4

0 λ̃−1)

)
. (2.46)

Comparing entries χ21(λ) in (2.45) and (2.46), we see that the Hamiltonian function
H = H0(x) corresponding to the Stokes multipliers s0 = s−1 = 0 is given by

H = H0(x) = 4λ3
0 + O(λ−2

0 ) = 4(−x/6)3/2 + O(x−1). (2.47)

Next, comparing entries χ11(λ) in (2.45) and (2.46) and using (2.47), we find the asymptotics
of the Painlevé function y = y0(x),

y = y0(x) = λ0 + O(λ−4
0 ) =

√
−x/6 + O(x−2). (2.48)

Recall that λ0 = (e−iπx/6)1/2 where the main branch of the root is taken. ��
Let us go to the case of the nontrivial s−1 described by the RH problem (2.22). We look

for the solution �(λ) in the form of the product

�(λ) = (I − (H − H0)σ+)X(λ)(λ), (2.49)

where (λ) is the solution of the reduced RH problem (2.23) and H0 (2.47) is the Hamiltonian
function (2.14) corresponding to the Painlevé transcendent y0(x) (2.48). Using (2.13), we find
the asymptotics of X(λ) as λ → ∞,

X(λ) = (I + (H − H0)σ+)�−1

= I + 1

2λ
(y − y0 − (H − H0)

2)σ3 − 1

λ
(H − H0)σ− +

(
O(λ−3/2) O(λ−1)

O(λ−2) O(λ−3/2)

)
.

(2.50)

Thus we arrive at the RH problem for the correction function X(λ) on the steepest descent
line γ+,

(i) X(λ) → I, λ → ∞,
(ii) X+(λ) = X−(λ)G(λ), λ ∈ γ+,

G(λ) = (λ)S−1
−1(λ)

(2.51)

Note, (λ) is continuous across γ+ and therefore holomorphic in some neighbourhood of γ+
as arg x ∈ [(3π/5), π], and |x| is large enough.

The jump matrix on γ+ can be estimated as follows:

‖G(λ) − I‖ � c|s−1| exp
[− 1

5 211/431/4|x|5/4 cos
(

5
4 (arg x − π)

)]
× exp [ − 23/431/4|x|1/4|λ − λ0|2]. (2.52)

Here c is some positive constant whose precise value is not important for us and λ0 = (e−iπx)1/2

is the stationary phase point for exp(g(λ)), see (2.18). Estimate (2.52) yields the estimate for
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the norm of the singular integral operator K in the equivalent system of singular integral
equations, X− = I + KX−,

‖K‖L2(γ+) � c′|s−1| exp
[− 1

5 211/431/4|x|5/4 cos( 5
4 (arg x − π))

]
, c′ > 0. (2.53)

If |x| is large enough and arg x ∈ [(3π/5) + ε, π], ε > 0, then the operator K is contracting
and the system X− = I + KX− is solvable by iterations in L2(γ+), i.e. X− = ∑∞

n=0 KnX−.
However, to incorporate the oscillating direction arg x = 3π/5 in the general scheme, we use
a more refined procedure.

Theorem 2. 2. If s0 = 0, arg x ∈ [(3π/5), π] and |x| is large enough, then there exists a unique
solution of the RH problem (2.10)–(2.12). The corresponding Painlevé function has the
asymptotics

y(x) = y0(x) + s−1√
π

2−11/83−1/8(e−iπx)−1/8 exp
[− 1

5 211/431/4(e−iπx)5/4
]
(1 + O(x−3/8)),

(2.54)

where y0(x) ∼
√

e−iπx/6 is the solution of the Painlevé equation for s0 = s−1 = 0, s1 = s2 =
s−2 = i.

Proof. It is enough to prove the solvability of the RH problem (2.51).
Using, for (λ), the expressions (2.37) with (2.36) and the estimate (2.46) together, we

find the asymptotics of the jump matrix G(λ),

G(λ) = I + 1
2 s−1e2g

(
1 + O(λ−2

0 λ̃−1/2) −λ̃1/2 + O(λ−2
0 )

λ̃−1/2 + O(λ−2
0 λ̃−1) −1 + O(λ−2

0 λ̃−1/2)

)
, λ ∈ γ+, λ̃ = λ + 2λ0.

(2.55)

Consider the following model RH problem:

(i) P(λ) → I, λ → ∞,

(ii) P+(λ) = P−(λ)Ĝ(λ), λ ∈ γ+,

Ĝ(λ) = I + 1
2 s−1e2g

(
1 −(3λ0)

1/2

(3λ0)
−1/2 −1

)
.

(2.56)

This problem is solvable by the following quadrature:

P(λ) = I + 1

2
s−1

1

2πi

∫
γ+

e2g

ζ − λ
dζ

(
1 −(3λ0)

1/2

(3λ0)
−1/2 −1

)
. (2.57)

We look for the solution X(λ) of the RH problem (2.51) in the form of the product,

X(λ) = Q(λ)P(λ). (2.58)

The correction function Q(λ) satisfies the RH problem

(i) Q(λ) → I, λ → ∞,

(ii) Q+(λ) = Q−(λ)W(λ), λ ∈ γ+,

W(λ) = P−(λ)G(λ)Ĝ(λ)−1P−1
− (λ).

(2.59)
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Using (2.55)–(2.57), we find the estimate for the jump matrix W(λ) on γ+,

W(λ) = I + O(s−1e2g(λ − λ0)λ
−1/2
0 ), λ ∈ γ+, (2.60)

Our next steps are similar to those presented in the proof of theorem 2.1. Consider
the system of the singular integral equations for Q+(λ) equivalent to the RH problem (2.59),
Q+ = I+KQ+. Here, the singular integral operator K is the superposition of the multiplication
operator in W − I and of the Cauchy operator C+. Because the Cauchy operator is bounded
in L2(γ+), the singular integral operator K for large enough |x|, arg x ∈ [(3π/5), π], satisfies
the estimate

‖K‖L2(γ+) � c|s−1||x|−1/2 exp
[− 1

5 211/431/4|x|5/4 cos
(

5
4 (arg x − π)

)]
, (2.61)

with some positive constant c whose precise value is not important for us. Thus equation
ζ+ = KI + Kζ+ for the difference ζ+ := Q+ − I is solvable by iterations in the space
L2(γ+) for large enough |x|. The solution of the RH problem (2.59) is given by the integral
Q = I + KI + Kζ+. This implies that the asymptotics of Q(λ) as λ → ∞,

Q(λ) = I + 1

2πi

∫
γ+

(I + O(KI(ζ)))(I − W−1(ζ))
dζ

ζ − λ

= I + O(λ−1s−1x
−1/2 exp(− 1

5 211/431/4Re(e−iπx)5/4)). (2.62)

Now, let us find the asymptotics of the Painlevé function y(x). Using (2.58), (2.57) and
the estimate (2.62), we find that

X(λ) = I + s−1

λ
√

π
2−19/83−1/8(e−iπx)−1/8 exp [ − 1

5 211/431/4(e−iπx)5/4](I + O(x−3/8))

×
(

1 −2−1/431/4(e−iπx)1/4

21/43−1/4(e−iπx)−1/4 −1

)
. (2.63)

Comparing (2.63) and (2.50), we conclude that the Hamiltonian function for s0 = 0 is

H(x) = H0(x) − s−1√
π

2−17/83−3/8(e−iπx)−3/8 exp [ − 1
5 211/431/4(e−iπx)5/4](1 + O(x−1/8)),

(2.64)

while the Painlevé function is given by

y(x) = y0(x) + s−1√
π

2−11/83−1/8(e−iπx)−1/8 exp [ − 1
5 211/431/4(e−iπx)5/4](1 + O(x−3/8)),

(2.65)

where H0(x) and y0(x) are the Hamiltonian and the Painlevé functions, respectively,
corresponding to s0 = s−1 = 0. ��
2.2. Other degenerate Painlevé functions

Applying the symmetry (2.16a) to the solution (2.54) and changing the argument of x in 2π,
we obtain



Quasi-linear Stokes phenomenon for the Painlevé first equation 11163

Theorem 2. 3. If s0 = 0 and|x| → ∞, arg x ∈ [π, (7π/5)], then the asymptotics of the Painlevé
first transcendent is given by

y(x) = y1(x) − s1√
π

2−11/83−1/8(e−iπx)−1/8 exp[− 1
5 211/431/4(e−iπx)5/4](1 + O(x−3/8)),

(2.66)

where y1(x) ∼
√

e−iπx/6 is the solution of the Painlevé equation for s0 = s1 = 0, s−1 =
s2 = s−2 = i.

The solutions y0(x) and y1(x) = y0(e2πix̄) are meromorphic functions of x ∈ C and thus
can be continued beyond the sectors indicated in theorems 2.2 and 2.3. To find the asymptotics
of y1(x) in the interior of the sector arg x ∈ [3π/5, π], we apply (2.54). Similarly, we find the
asymptotics of the solution y0(x) in the interior of the sector arg x ∈ [π, 7π/5] using (2.66).
Either expression implies

Corollary 2. 4. If |x| → ∞, arg x ∈ [3π/5, 7π/5], then

y1(x) − y0(x) = i√
π

2−11/83−1/8(e−iπx)−1/8 exp[− 1
5 211/431/4(e−iπx)5/4](1 + O(x−3/8)).

(2.67)

Applying symmetries (2.16) to yk(x), k = 0, 1, we find the solutions yk(x) corresponding
to the Stokes multipliers sk = sk−1 = 0,

y2n(x) = ei(4π/5)ny0(ei(2π/5)nx) for s2n = s2n−1 = 0,

y2n+1(x) = ei(4π/5)ny1(e
i(2π/5)nx) for s2n+1 = s2n = 0.

(2.68)

Since there is one-to-one correspondence between the points of the monodromy surface and
the Painlevé functions, the first of the identities (2.8 ′), sk+5 = sk, implies that yn+5(x) = yn(x).

Using theorems 2.2 and 2.3, we find that

y4n(x) = y4n+5(x) =
√

e−iπ(x/6) + O(x−2),

|x| → ∞, arg x ∈
[
π

5
− 4π

5
n, π − 4π

5
n

]
, (2.69)

y4n−2(x) = y4n+3(x) = −
√

e−iπ(x/6) + O(x−2),

|x| → ∞, arg x ∈
[

3π

5
− 4π

5
n,

7π

5
− 4π

5
n

]
. (2.70)

The symmetry (2.16) with the definition (2.68) applied to (2.67) yields

Corollary 2. 5. If |x| → ∞ and arg x ∈ [(3π/5) − (2π/5)n, (7π/5) − (2π/5)n], then

y2n+1(x) − y2n(x) = 1√
π

exp

(
i
π

2
+ i

4π

5
n

)
2−11/83−1/8

[
exp

(
−iπ + i

2π

5
n

)
x

]−1/8

× exp

(
− 1

5 211/431/4 exp

(
−iπ + i

2π

5
nx

))5/4

(1 + O(x−3/8)). (2.71)
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On the one hand, equations (2.67), (2.71) constitute the quasi-linear Stokes phenomenon
for the Painlevé first equation. On the other hand, these equations give the asymptotic
description of the degenerate Painlevé functions beyond the sectors in (2.69) and (2.70).
Observing that the difference (2.71) is exponentially small in the interior of the indicated
sector, we conclude that the asymptotics (2.69) and (2.70) as |x| → ∞ continue to wider open
sectors,

y4n(x) =
√

e−iπ
x

6
+ O(x−2), arg x ∈

(
ε − π

5
− 4π

5
n,

7π

5
− 4π

5
n − ε

)
, (2.72)

y4n−2(x) = −
√

e−iπ
x

6
+ O(x−2), arg x ∈

(
ε + π

5
− 4π

5
n,

9π

5
− 4π

5
n − ε

)
, (2.73)

where ε > 0 is an arbitrary small constant.

Remark 2.3. The solutions yn(x) (2.68) corresponding to the trivial values of two Stokes
multipliers sn = sn−1 = 0 are the most degenerate among the Painlevé transcendents since
they behave algebraically in four of the five sectors arg x ∈ (−π

5 + 2π
5 k, π

5 + 2π
5 k), k = 0, ±1, ±2,

see (2.72), (2.73). Nevertheless, these solutions are transcendent, since their asymptotics as
|x| → ∞ within the remaining sector involves the elliptic function of Weierstrass, for more
details see [30]. Moreover, the fact that the asymptotics of yn(x) is not elliptic in four sectors
uniquely determines the values of all the Stokes multipliers sk. Thus the asymptotics (2.72),
(2.73) uniquely determine the degenerate solutions yn(x).

Remark 2.4. The asymptotics of less degenerate solutions corresponding to sn = 0 and sn+1+
sn−1 = i can be found by applying the symmetries (2.16b) to equations (2.54) and (2.66).

3. Coefficient asymptotics

Using the steepest descent approach, cf [42], we can show the existence of the asymptotic
expansion of yn(x), n ∈ Z, in the negative degrees of x1/2. Further elementary investigation
of the recursion relation for the coefficients of the series allows us to claim that the asymptotic
expansion for yn(x) in (2.72), (2.70) has the following form:

yf (x) = σ(− x
6 )1/2

∞∑
k=0

akσ
k(−x)−5k/2 + O(x−∞)

= σ(− x
6 )1/2

∞∑
k=0

a2k(−x)−5k + 1√
6
(−x)−2

∞∑
k=0

a2k+1(−x)−5k + O(x−∞),

σ2 = 1, (3.1)

where coefficients ak are determined uniquely by the recurrence relation

a0 = 1, ak+1 = 25k2 − 1

8
√

6
ak − 1

2

k∑
m=1

amak+1−m. (3.2)

Several initial terms of the expansion are given by

yf (x) = σ
√

−x/6

{
1 + 49

768x5
− 4412 401

1179 648x10
+ 245 229 441 961

100 663 296x15
+ O(x−20)

}

− 1

48x2

{
1 − 1225

192x5
+ 73 560 025

49 152x10
− 7759 635 184 525

3538 944x15
+ O(x−20)

}
. (3.3)
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Our next goal is to determine the asymptotics of the coefficients ak in (3.1) as k → ∞.
With this purpose, let us construct a sectorial analytic function ŷ(t),

arg t ∈ [ − 2π
5 (n + 1), − 2π

5 n] : ŷ(t) = y4n(eiπt2), n = −2, −1, 0, 1, 2. (3.4)

The function ŷ(t)has a finite number of poles all contained in a circle |t| < ρ and is characterized
by the uniform asymptotic expansion near infinity,

ŷ(t) = t√
6

∞∑
k=0

akt
−5k + O(t−∞). (3.5)

Let y(N)(t) be a partial sum

y(N)(t) = t√
6

N−1∑
k=0

akt
−5k, (3.6)

and v(N)(t) be a product

v(N)(t) = t5N−2
√

6(ŷ(t) − y(N)(t)) = t−1
∞∑

k=0

ak+Nt−5k + O(t−∞). (3.7)

Because t5N−2y(N)(t) is a polynomial, the integral of v(N)(t) along the counter-clockwise
oriented circle of radius |t| = ρ satisfies the estimate∣∣∣∮

|t|=ρ

v(N)(t) dt

∣∣∣ � ρ5N−2
√

6
∮

|t|=ρ

|ŷ(t)| dl �
√

6 2πρ5N−1 max
|t|=ρ

|ŷ(t)| = Cρ5N (3.8)

with some positive constant C whose precise value is not important for us.
On the other hand, inflating the sectorial arcs of the circle |t| = ρ, we find that

∮
|t|=ρ

v(N)(t) dt =
∮

|t|=R

v(N)(t) dt +
2∑

n=−2

∫
exp[i(2π/5)n](ρ,R)

(
v

(N)
+ (t) − v

(N)
− (t)

)
dt. (3.9)

Because v(N)(t) = t−1aN + O(t−6), the first of the integrals in the rhs of (3.9) is computed as
follows: ∮

|t|=R

v(N)(t) dt = 2πiaN + O(R−5). (3.10)

The remaining integrals in (3.9) are computed using definitions (3.4)–(3.7) and (2.68) with the
identification y−4(x) = y1(x) and the formula (2.67) together,

2∑
n=−2

∫
exp[i(2π/5)n](ρ,R)

(
v

(N)
+ (t) − v

(N)
− (t)

)
dt = 5

√
6

∫
(ρ,R)

t5N−2(y−4(e
iπt2) − y0(e

iπt2)) dt

= i
5
√

6√
π

2−11/83−1/8
∫

(ρ,R)

t5N− 9
4 exp(− 1

5 211/431/4t5/2)(1 + O(t−3/4))dt

= 2i

√
6√

5
√

π
( 1

5 211/431/4)−2N�(2N − 1
2 )(1 + O(N−3/10)) + O(ρ5N−(5/2))

+ O(exp(− 1
5 211/431/4R5/2)R5N−(15/4)). (3.11)
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Thus, letting R = ∞, we find the asymptotics of the coefficient aN in (3.1) as N → ∞,

aN = −
√

6√
5 π3/2

( 1
5 211/431/4)−2N�(2N − 1

2 )(1 + O(N−3/10)) + O(ρ5N), N → ∞.

(3.12)

Remark 3.1. The presented asymptotic formula shows a remarkable accuracy: neglecting
error terms in (3.12), we find an approximation to aN with the relative error not exceeding 2%
for N = 4 and 1% for N = 7. Furthermore, for the initial set of N = 1, 2, . . . , 7, the relative
error decreases approximately as N−1, which is significantly better than estimated.

Acknowledgments

This work was partially supported by RFBR grant no 02–01–00268. The author is grateful to
A R Its for important remarks and suggestions.

References
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[21] Holmes P and Spence D 1984 On a Painlevé-type boundary-value problem Q. J. Mech. Appl. Math. 37 525–38
[22] Hille E 1986 Lectures on Ordinary Differential Equations (Reading, MA: Addison-Wesley)
[23] Joshi N and Kitaev A 2001 On Boutroux tritronquée solutions of the first Painlevé equation Stud. Appl. Math.
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[33] ItsA R and KapaevAA 2003 Quasi-linear Stokes phenomenon for the second Painlevé transcendent Nonlinearity
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solutions of the fifth Painlevé equation Math. Res. Lett. 4 741–59
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